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Abstract

When a map is classically uniquely ergodic, it is expected that its
quantization will posses quantum unique ergodicity. In this paper we
give examples of Quantum Unique Ergodicity for the Kronecker map,
the perturbed Kronecker map, and an upper bound for the rate of con-
vergence. The case of degeneracies in the eigenspaces is also discussed.
When the dimension of the eigenspace is greater then 1, one looks for
symmetries of the quantized map called ”Hecke Operators”, and find
a joint eigenbasis. We find here that for the mentioned maps and also
for the irrational skew translation, this reduces the multiplicity to 1.

1 Introduction

1.1 background

One of the problems in Quantum Chaos is the asymptotic behavior of the
expectation value in eigenstates. When quantizing classical dynamics on a
phase space one constructs a Hilbert space of states ,Hh, and an algebra
of operators , the algebra of ”quantum observables”, that assigns for each
smooth function on the phase space f an operator Oph(f) where h implies de-
pendence on Planck’s constant h, and the dynamics is quantized to a unitary
time evolution operator, Uh on Hh. For any orthonormal basis of eigenfunc-
tions of Uh, {ψj}, the expectation value of Oph(f) in the eigenstate ψj is given
by 〈Oph(f)ψj, ψj〉. The semiclassical limit of these is the limit where h→ 0.
When the classical dynamics of a system is ergodic, it is known that the time
average of the trajectories of the system converges to the space average. An
analogue of this is given by Schnirelman’s Theorem [10], which states that for
ergodic system the expectation values of Op(f) converges to the phase space
average of f , for all but possibly a zero density subsequence of eigenfunc-
tions. This is referred to as quantum ergodicity. The case where there are no
exceptional subsequences is referred to as quantum unique ergodicity (QUE).

A first example of QUE was given on the 2-torus T2,by Marklof and Rud-
nick [8], where the classical dynamics is an irrational skew translation, that
is classically uniquely ergodic. In this paper we will give a family of more
examples of QUE on the 2-torus, all of them are also classically uniquely
ergodic.
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When the phase space is T2 = R2/Z2 it is required that each state will
be periodic in both position and momentum and thus Planck’s constant is
restricted to be an inverse of an integer h = 1

N
, and the Hilbert space is of

dimension N , namely L2(Z/NZ). The semiclassical limit in this case is the
limit where N → ∞. With this as the Hilbert space of state, the algebra
of quantum observables attached to smooth functions on T2, OpN(f), are
N × N matrices. Given a map A on T2, we define its quantization as a
sequence of unitary operators on L2(Z/NZ), UN(A) satisfying

‖UN(A)−1 OpN(f)UN(A)−OpN(f ◦ A)‖ −→ 0 as N →∞ (1)

for all f ∈ C∞(T2), where f ◦ A(p, q) = f(A(p, q)). This is an analogue of
Egorov’s Theorem, and the eigenfunctions of UN(A) are analogues of eigen-
modes. A famous example of a quantization of a map is of linear auto-
morphism of T2 called the ”CAT map”,([5],[2]), that is if A ∈ SL(2,Z). If
|trA| > 2 that is if A is hyperbolic, and the map is known to be ergodic.

1.2 QUE for maps on the torus

The maps in this paper will be the Kronecker map ,the perturbed Kronecker
map and skew translation.
The Kronecker map is

τα : T2 → T2

x 7→ x+ α mod 1

where α = (α1, α2).
The perturbed Kronecker map is where one of the variables is perturbed with
a nonlinear zero-averaged smooth function that is

Φα
V : T2 → T2

Φα
V :

(
p
q

)
7→

(
p+ α1

q + α2 + V (p)

)
mod 1

The skew translation is

Aα :

(
p
q

)
7→
(
p+ α
q + 2p

)
mod 1 (2)

where α is irrational number. The Kronecker map is known to be uniquely
ergodic when 1, α1, α2 are linearly independent over Q. We will construct a

5



quantization of it by approximating α with rational numbers a
N

= (a1,a2)
N

.For
rational numbers we have an exact Egorov, that is

U−1
a,N OpN(f)Ua,N = OpN(f ◦ τa/N)

and thus by the convergence of a
N

to α we will get (1). For this map we have
the following theorem for polynomials:

Theorem 1.1. Suppose 1, α1, α2 are linearly independent over Q. Let f ∈
C∞(T2) be a polynomial. Then for all eigenfunctions ψ of UN(τα) we have
that for N sufficiently large

〈OpN(f)ψ, ψ〉 =

∫
T2

f(p, q)dpdq

For the more general case of smooth functions one needs to assume a
certain restriction on α. we assume that α satisfy a certain diophantine
inequality, that is there exists γ > 0 such that for all n1, n2, k ∈ Z

|n1α1 + n2α2 + k| � ‖(n1, n2)‖−γ (3)

This reduces the set of numbers rather than being all α such that 1, α1, α2

are linearly independent over Q to a set of almost all α in Lebesgue measure
sense. For these α we have,

Theorem 1.2. Suppose 1, α1, α2 are linearly independent over Q and satisfy
(3) then for all eigenfunctions ψ of UN(τα)

|〈OpN(f)ψ, ψ〉 −
∫

T2

f(p, q)dpdq| � N−θ ∀θ > 0

The perturbed map is also uniquely ergodic. In fact we show that it is
conjugate to τα and we also have QUE for it. We give an upper bound for
the rate of convergence:

Theorem 1.3. Suppose 1, α1, α2 are linearly independent over Q and satisfy
(3) then for all eigenfunctions ψ of UN(Φα

V )

|〈OpN(f)ψ, ψ〉 −
∫

T2

f(p, q)dpdq| � N−2
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These results on the asymptotic behavior for these maps is much faster
comparing to other expected and known rates. For the skew translation (a
proof for unique ergodicity can be found in [3]) it was proven by J. Marklof
and Z. Rudnick in [8] that for generic α the exponent is bounded by 1

4
+ ε,

and they also constructed special cases where the rate of convergence is
arbitrarily slow. Another example is the CAT map where it is conjectured
that the exponent of N is 1

2
+ ε.

1.3 Hecke operators

The degeneracies of the eigenspaces are also discussed. In spherical harmon-
ics, when observing the eigenfunctions of the laplacian operator ∆ on the
2-sphere S2, it is known that the elements in the group of rotations of R3

,SO(3), commute with ∆ and therefore act on its eigenspaces. A known
phenomena is that if we fix a north pole o ∈ S2, then there is a unique
basis of joint eigenfunction of ∆, and of the commutative group of all ro-
tations about o. Moreover it is known that SO(3) acts irreducibly on the
eigenspaces of ∆. A similar situation we find here. By constructing explicit
eigenfunctions for the Kronecker map, we finds that the the eigenvalues of
UN(A) are exactly all Dth roots of unity where D = gcd(a,N), ( a

N
= (a1,a2)

N

is the approximation of α), up to a constant rotation, and the dimensions of
all eigenspaces is also D. Due to this fact we find that when D > 1 there are
degeneracies in the eigenspaces, which cause a slower rate of convergence.
In this case we find symmetries connected to UN(A). These are operators
that commute with UN(A) called Hecke operators. This type of operators
and eigenfunction were first introduced by Z. Rudnick and P. Kurlberg in [6]
and were they showed that for the CAT map and for joint eigenfunctions of
all Hecke operators, named Hecke eigenfunctions, the expectation value in
these states converges to the classical phase-space average of the observable,
(a phenomena that does not necessarily hold for general set of eigenfunctions
[4])

We will find these Hecke operators for τα and for the skew translation.
For τα we will find that these operators act irreducibly on the eigenspaces of
UN(A), and for a choice of a generator of this group there is a unique basis
of eigenfunctions, that is there are no joint degeneracies. The case of Φα

V is
the same as of τα because of the fact that Φα

V is conjugate to τα. For the
skew translation, we also find such Hecke operators , and see that there is
a unique basis of Hecke eigenfunctions, for them the rate of convergence of
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〈OpN(f)ψ, ψ〉 to the phase space average of f is always N−2.

2 Background

We begin with a quantization procedure for maps on the 2-torus T2. The
procedure can be find in full description in [6],[1]. We construct a Hilbert
space of state Hh with respect to Planck’s constant h, quantum observables,
and a quantization of our maps.

2.1 Notations

We abbreviate e(x) = e2πix, and eN(x) = e( x
N

).

2.2 Hilbert space of state

Our classical phase space is T2. The elements of the Hilbert space are thus,
distribution on the line R that are periodic in both position and momentum.
Using the momentum representation of a wave-function ψ by the Fourier
transform

Fhψ(p) =
1√
h

∫ ∞

−∞
ψ(q)e(

−qp
h

)dq

we find that the requirements

ψ(q + 1) = ψ(q) Fhψ(p) = Fhψ(p+ 1)

restricts planck’s constant h to be an inverse of integer h = 1
N

, and Hh

consists of periodic point-mass distributions at the coordinates Q = q
N

. We
therefore find that the Hilbert space is of dimension N , and therefore denote
HN , and we may identify it with L2(Z/NZ), with the inner product

〈ψ, φ〉 =
1

N

∑
Q mod N

ψ(Q)φ̄(Q)

The Fourier transform is given by

ψ̂(P ) = [FNψ] (P ) =
1√
N

∑
Q mod N

ψ(Q)eN(−QP )
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and its inverse formula is

ψ(Q) =
[
F−1

N ψ̂
]
(Q) =

1√
N

∑
P mod N

ψ̂(P )eN(PQ)

2.3 Quantum observables

We now assign each classical observable, a smooth function f ∈ C∞(T2), a
quantum observable, that is an operator OpN(f) on HN that satisfy,

1. OpN(f̄) = OpN(f)∗

2. OpN(f) OpN(g) ∼ OpN(fg) as N →∞

3. 1
2πiN

[OpN(f),OpN(g)] ∼ OpN({f, g}) as N →∞

where [A,B] = AB − BA is the commutator, and {f, g} = ∂f
∂p

∂g
∂q
− ∂g

∂p
∂p
∂q

are
the Poisson bracket. The norm used is the induced norm from the inner
product on HN .

A central role play the translation operators

[t1ψ] (Q) = ψ(Q+ 1)

and
[t2ψ] (Q) = eN(Q)ψ(Q)

that are analogues of the of the differentiation and multiplication (respec-
tively) operators. The Heisenberg’s commutation relations are

ta
1t

b
2 = tb

2t
a
1eN(ab) ∀a, b ∈ Z

Notice that
FNt1FN = t2

and
FNt2FN = t−1

1

With these operators we construct

TN(n) = eN(
n1n2

2
)tn2

2 t
n1
1 , n = (n1, n2) ∈ Z2

whose action on a wave-function ψ ∈ HN is

TN(n)ψ(Q) = e
iπn1n2

N eN(n2Q)ψ(Q+ n1)
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Notice that
TN(n)∗ = TN(−n)

TN(m)TN(n) = eN(
ω(m,n)

2
)TN(m+ n) (4)

where, ω(m,n) = m1n2 −m2n1, and that TN is a unitary operator. Finally
for a general smooth function

f(x) =
∑
n∈Z2

f̂(n)e(n · x)

where x = (p, q). we define its quantization OpN(f)

OpN(f) =
∑
n∈Z2

f̂(n)TN(n) (5)

and the conditions mentioned are all satisfied.

3 Quantization of maps and rate of conver-

gence

When quantizing a map, we look for a sequence of unitary operators UN(A)
on HN , the quantum propagator, whose iterates give the evolution of the
quantum system, and that in the semiclassical limit, (the limit as N →∞ or
h → ∞), the quantum evolution follows the classical evolution as described
in the following definition.

Definition 3.1 (”Egorov’s Theorem”). A quantization of a map A :
T2 → T2 is a sequence of unitary operators ,{UN}, satisfying the following:

‖U−1
N OpN(f)UN −OpN(f ◦ A)‖ → 0 as N →∞ (6)

The stationary states of the quantum system are given by the eigenfunc-
tions ψ of UN(A). We will find that for the maps studied in this paper the
limiting expectation value of observables in normalized eigenstates converges
(for all N) to the classical average of the observable, that is

〈OpN(f)ψ, ψ〉 →
∫

T2

f as N →∞
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3.1 Quantizing Kronecker map

In this section we construct a quantization to the Kronecker map.

Lemma 3.1. suppose (a1,a2)
N

is a sequence of rational numbers such that
(a1,a2)

N
= ~a

N
−−−−→
N→∞~α then the sequence UN := TN(−a2, a1) is a quantization of

Kronecker’s map.

Proof. First assume f(x) = en(z) := e(n · z). In this case we get that
f̂(n) = 1, f̂(m) = 0 for m 6= n ,and therefore OpN(f) = TN(n).
Denote ã := (−a2, a1),and notice that n · a = ω(n, ã). Now

U−1
N TNUN = TN(−ã)TN(n)TN(ã)

which due to (4), linearity and antisymmetry of ω(m,n) is

eN(ω(n, ã))TN(n) = eN(n · a))TN(n) (7)

on the other hand,we have

(en ◦ τα)(x) = e(n1(p+ α1) + n2(q + α2)) = e(n · ~α)en(x)

and so
OpN(en ◦ τα) = e(n · ~α)TN(n) (8)

And from (7),(8) we get that

‖U−1
N TN(n)UN − e(n · α)TN(n)‖ = |eN(n · ~a)− eN(n · ~α)| · ‖TN(n)‖ (9)

For a general function

f(x) =
∑
n∈Z2

f̂(n)en(x)

we have by (9), that

‖U−1
N OpN(f)UN−OpN(f◦A)‖ = ‖U−1

N {
∑
n∈Z2

f̂(n)TN(n)}UN−
∑
n∈Z2

f̂(n)e(n·α)TN(n)‖ =

‖
∑
n∈Z2

f̂(n){eN(n·a)−e(n·α)}TN(n)‖ ≤
∑
n∈Z2

|f̂(n)|·|e(n·a)−e(n·α)|·‖TN(n)‖

And since TN is a unitary operator so ‖TN(n)‖ = 1,

|eN(n · ~a
N

)− eN(n · ~α)| � ‖n‖|~α− ~a

N
|
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we get

‖U−1
N OpN(f)UN −OpN(f ◦ A)‖ = |~α− ~a

N
|

(∑
n∈Z2

‖n‖f̂(n)

)
= O(|~α− ~a

N
|)

which goes to zero since |~α − ~a
N
| → 0 as N → ∞ implying that UN is a

quantization of τα.

Remark 3.1. Notice that for each N , we have exact Egorov for τa/N , that is

U−1
N OpN(f)UN = OpN(f ◦ τa/N)

3.2 Convergence of eigenstates

We now wish to give an upper bound for the remainder of

|〈OpN(f)ψ, ψ〉 −
∫

T 2

f | (10)

where ψ is an eigenfunction of UN . Actually we will prove the following:

Theorem 3.2. Suppose 1, α1, α2 are linearly independent over Q. Then For
any eigenfunction ψ(Q) of UN

1. If f is a polynomial then for N large enough,

〈OpN(f)ψ, ψ〉 =

∫
T 2

f

2. If α1, α2 are algebraic over Q, then for f ∈ C∞(T2)

〈OpN(f)ψ, ψ〉 −
∫

T 2

f = O(
1

N θ
) ,∀θ > 0

3. For almost every pair ~α = (α1, α2) (in Lebesgue measure sense)

〈OpN(f)ψ, ψ〉 −
∫

T 2

f = O(
1

N θ
) ,∀θ > 0
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To prove this Theorem we will start with the following lemma:

Lemma 3.3. Denote by ψ(Q) to be an eigenfunctions of UN .

1.
〈OpN(f)ψ, ψ〉 = 〈OpN(fT )ψ, ψ〉 (11)

where

fT =
1

T

T−1∑
t=0

f ◦ τ t
(a/N)

2. For f(x) = en(x), 〈TN(n)ψ, ψ〉 is identically zero for large enough N.

Proof. 1. Since ψ is an eigenfunction of UN then UNψ = e(φ)ψ, and there-
fore for all t

〈OpN(f)U t
Nψ,U

t
Nψ〉 = 〈e(tφ) OpN(f)ψ, e(tφ)ψ〉 = 〈OpN(f)ψ, ψ〉

Now, since UN is unitary we have

〈OpN(f)U t
Nψ,U

t
Nψ〉 = 〈U−t

N OpN(f)U t
Nψ, ψ〉

and since
U−t

N OpN(f)U t
N = OpN(f ◦ τ t

a/N)

we have (11).

2. fix ~n = (n1, n2) ∈ Z2 , f(x) = en(x) and therefore
OpN(f) = TN(n). Notice that for f = en we have,

fT =
1

T

T−1∑
t=0

en ◦ τ t
(a/N) =

1

T

T−1∑
t=0

e(n1(p+ ta1/N) + n2(q + ta2/N)) =

1

T
en(p, q)

T−1∑
t=0

eN((n1a1 + n2a2)t)

and for T = N we have,

fN =

{
f if n2a2 + n1a1 = 0( mod N)

0 else
(12)
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and therefore,

OpN(fN) =

{
OpN(f) if n2a2 + n1a1 = 0( mod N)

0 else
(13)

but

n2a2 + n1a1 = Nk ⇐⇒ n2
a2

N
+ n1

a1

N
= k ∈ Z

⇐⇒ n2{α2 + O(|~α− ~a

N
|)}+ n1{α1 + O(|~α− ~a

N
|)} = k ∈ Z

and so we get

n2α2 + n1α1 + O(‖n‖|~α− ~a

N
|)} = k ∈ Z (14)

1, α1, α2 are linearly independent over Q so we can denote 0 < δ =
dist(n1α1 + n2α2,Z). Now assume that there exists infinitely many
pairs ~a = (a1, a2) such that (10) is nonzero i.e. n2a2 + n1a1 = Nk~a

.From (14) we get that

O(‖n‖|~α− ~a

N
|) = |k + n2α2 + n1α1| > δ > 0, N →∞ (15)

now since n is fixed and |~α− ~a
N
| → 0 as N →∞ we get a contradiction!

so we can deduce that for N � ‖n‖

|〈OpN(f)ψ, ψ〉 −
∫

T2

f |2 = |〈TN(n)ψ, ψ〉| = 0

Corollary 3.4. For any eigenfunction ψ of UN ,

1. if f is a trigonometric polynomial, 〈OpN(f)ψ, ψ〉 is identically zero for
large enough N.

2. For any f ∈ C∞(T2),

|〈OpN(f)ψ, ψ〉 −
∫

T 2

f | → 0 as N →∞
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Proof. 1. From the previous lemma we get that every trigonometric func-
tion has N such that (10) is identically zero so for a finite linear com-
bination

m∑
n=1

ane(n · x)

simply choose the largest N given from en(x), n = 1, . . . ,m

2. For a general f ∈ C∞(T2), we have

OpN(f) =
∑
n∈Z2

f̂(n)TN(n)

For ε > o, there exists R0, such that ∀R > R0,∑
‖n‖>R

|f̂(n)| < ε

For the polynomial

PR =
∑
‖n‖<R

f̂(n)e(n · x)

there exists N0, such that for all N > N0

〈OpN(PR)ψ, ψ〉 = 0

and so we have ,

|〈OpN(f)ψ, ψ〉| 6

|〈OpN(PR)ψ, ψ〉|+ |
∑
‖n‖>R

f̂(n)〈TN(n)ψ, ψ〉| 6 ε

for N > N0.

To finish the study of the upper bound for a general function we need to
study the size of n1α1 +n2α2 +k for n1, n2, k ∈ Z,and assume that α satisfies
a certain diophantine inequality that is |n1α1 +n2α2 + k| � c(α)

‖n‖γ for some γ.
Numbers like this are called diophantine.
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Definition 3.2. An l-tuple of real numbers (α1, . . . , αl) is called diophantine
if they satisfy that there exists γ such that for any integers (n1, . . . , nl) 6= ~0, k

|n1α1 + · · ·+ nlαl + k| � c(α)

‖n‖γ

with this we have the following.

Corollary 3.5. Suppose α is diophantine and that |~α− ~a
N
| � 1

N1−ε then we
have an upper bound for |〈OpN(f)ψ, ψ〉 −

∫
T2 f | � 1

Nθ for any θ > 0.

Proof. A general function is of the following form

f(x) =
∑
n∈Z2

f̂(n)en(x)

without loss of generality we can assume that
∫

T2 f = 0 and so divide

OpN(f) into two sums: OpN(f) =
∑

n∈Z2 f̂(n)TN(n) = I1 + I2 where I1 =∑
‖n‖6R f̂(n)TN(n), I2 =

∑
‖n‖>R f̂(n)TN(n). Now as seen earlier, the case

when |〈TN(~n)ψ, ψ〉| 6= 0 can only happen when

O(
‖n‖
N1−ε

) = |k + n2α2 + n1α1|

but our assumption is that there exists γ such that for all integer coefficients
k + n2α2 + n1α1 � 1

‖n‖γ � 1
Rγ and so define N1−ε = R1+γ+δ for some δ > 0

and we get that

R

N1−ε
>

‖n‖
N1−ε

� k + n2α2 + n1α1 �
1

‖n‖γ
� 1

Rγ

and for N1−ε = R1+γ+δ this gives a contradiction and so I1 = 0 for large
enough N. For I2 we use the rapid decay of the Fourier coefficients:

|I2| = |
∑
‖n‖>R

f̂(n)TN(n)| 6
∑
‖n‖>R

‖f̂(n)TN(n)‖ =
∑
‖n‖>R

|f̂(n)| 6 1

Rb
=

1

N θ

for any chosen θ.

For algebraic numbers we have this inequality by the following well known
theorem, (a proof is given in appendix A.2):
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Theorem 3.6. Suppose ~α = (α1, . . . , αm) are linearly independent over Q
then there exists D = D(α) such that

|n1α1 + nmαm + k| � c(~α)

‖n‖D−1

For the more general ~α we need the following theorem by Khintchine [9]:

Theorem 3.7. Almost no pair (α1, α2) is very well approximable that is that
for almost any pair there exists δ = δ(α1, α2) such that there are only finite
many integers m = (m1,m2), k such that the following inequality holds:|m1α1+
m2α2 + k| > 1

‖m‖2+δ

3.3 Perturbed Kronecker map

Another family of uniquely ergodic maps on T2, is the perturbed Kronecker
map. we see in this section that it is uniquely ergodic, due to the fact that
it is conjugate to the Kronecker map itself, and in the following section we
form a quantization for it.

Define the following shear perturbation:

ΦV :

(
p
q

)
7→
(

p
q + V (p)

)
and the perturbed Kronecker map:

Φα
V :

(
p
q

)
7→
(

p+ α1

q + α2 + V (p)

)
where V (p) ∈ C∞(T) satisfies

∫ 1

0
V (p)dp = 0. In order to prove the unique

ergodicity of this map, we will use the following Lemma that shows that the
perturbed map is conjugate to the Kronecker map.

Lemma 3.8. Suppose α1 is irrational.

1. If V (p) is a polynomial we have that

τα ◦ ΦV = Φh ◦ τα ◦ Φ−1
h

2. If α1 is diophantine then (1) holds for any V ∈ C∞(T)

17



for some h = hV ∈ C∞(T)

Proof. 1. The RHS of (1) is

Φhk
◦ τα ◦ Φ−1

hk
(p, q) =

(
p+ α1

q + α2 + hk(p+ α1)− hk(p)

)
define hk(p) = e(kx)

e(kα1)−1
(which is well defined for all k only if α1 is

irrational). hk(p) satisfy that e(kp) = hk(p+α1)− hk(p) and therefore
we get (1),and by linearity we get that(1) holds for every polynomial.

2. For V ∈ C∞(T), α1 diophantine , we have that |e(kα1)− 1| ∼ {kα} �
1
|k|γ and we get that∑

k∈Z

|V̂ (k)hk(p)| �
∑
k∈Z

|V̂ (k)||k|γ

converges absolutely, and so define hV (p) =
∑

k∈Z V̂ (k)hk(p) and hV (p)
satisfy hV (p+α1)− hV (p) = V (p) since hk satisfy that for every k and
due to the absolute convergence of the series.

with Φα
V described as a conjugate of τα we have the following result:

Theorem 3.9. Suppose 1, α1, α2 are linearly independent over Q. Then,

1. For V (p) a polynomial, Φα
V is uniquely ergodic.

2. For α diophantine and V (p) ∈ C∞(T) then Φα
V is uniquely ergodic.

Proof. The proof is a corollary of Lemma 3.8 and therefore the same for both
parts.
We will first show that Lebesgue measure is Φα

V invariant. Suppose f(p, q) ∈
L1(T2). Then f ◦ Φα

V (p, q) = f(p, q + V (p)) and so∫ 1

0

∫ 1

0

f(p+ α1, q + V (p) + α2)dqdp =

∫ 1

0

∫ 1

0

f(p, q)dqdp

by standard change of variables. Now, assume µ is an invariant measure of
Φα

V . since Φα
V = Φh ◦ τα ◦ Φ−1

h for some h ∈ C∞(T), then Φh ◦ µ is invariant
measure of τα, but there exists only one such measure and which is Lebesgue
measure m, that is Φh ◦ µ = m is Lebesgue measure. Φh is an invertible
map, that preserves Lebesgue measure, so µ = Φ−1

h ◦m = m therefore Φα
V is

uniquely ergodic.

18



3.4 Quantizing the perturbed maps

In order to quantize the perturbed Kronecker map, in this section we prove
an Egorov theorem for the quantization of the map:

Φv : p 7→ p, q 7→ q + v(p) mod 1

where v(p) ∈ C∞(T),
∫

T v = 0.

Denote Uv(N) = eiNV ( Q
N

), where V ′(p) = −v(p). The quantization was
constructed by Marklof and O’Keefe, in [7].

Lemma 3.10. For fixed n = (n1, n2) we have

||U−1 OpN(en)U −OpN(en ◦ Φ)|| � |n1|3

N2

Proof. It suffices to show that

〈
(
U−1

v OpN(en)Uv −OpN(en ◦ Φv)
)
ψ, ψ〉 � |n1|3

N2

for all ψ ∈ L2(Z/NZ) with ||ψ|| = 1. So take the normalized delta-functions
uQ(Q′) :=

√
NδQ(Q′) as the orthonormal basis of L2(Z/NZ), and lets com-

pute matrix elements, that is for Q1, Q2 mod N compute (we abbreviate
gN(x) := e−iNV (x)):

〈U−1
v TN(n)UvuQ1 , uQ2〉 = 〈TN(n)UvuQ1 , UvuQ2〉

= eiπn1n2/N
∑

Q′ mod N

gN(
Q′ + n1

N
)δQ1(Q

′ + n1)eN(n2Q
′)ḡN(

Q′

N
)δQ2(Q

′)

= eiπn1n2/NgN(
Q2 + n1

N
)gN(

Q2

N
)eN(n2Q)δQ1(Q2 + n1)

= e−iNV (
(Q2+n1)

N
)eiNV (2π

kQ2
N

)e(n2(
Q2

N
) +

n1

2N
)δN(Q1 −Q2, n1)

where δN(a, b) = 1 if a = b mod N and is zero otherwise. Now expand the
exponents, keeping n1, n2 fixed while N → ∞, using Taylor expansion of
V (p) around x0 = Q

N
+ n1

2N

−iNV (
Q2 + n1

N
) + iNV (

Q2

N
) = in1v(

Q2

N
+

n1

2N
) +O(

|n1|3

N2
)
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to find that

〈U−1
v TN(n)UvuQ1 , uQ2〉

= eiπn1n2/Nein1v(
kQ2
N

)e(
n2Q2

N
)δN(Q1 −Q2, n1)

(
1 +O(

|n1|3

N

2

)

)
(16)

To compute 〈OpN(en ◦Φ)uQ1 , uQ2〉, we will use an alternative representation
of OpN(f)

[OpN(f)]ψ(Q) =
∑
m∈Z

a(m,
Q

N
+

m

2N
)ψ(Q+m)

where

a(m, p) =

∫
T
f(p, q)e(−mq)dq

In our case where f(p, q) = en ◦ Φ(p, q), we have a(n1, p) = e(n2p + n1v(p))
for m = n1 and 0 otherwise. and then

〈OpN(en ◦ Φv)uQ1 , uQ2〉 =
∑
m∈Z

〈a(m, Q
N

+
m

2N
)uQ1+n1 , uQ2〉 =

e(n2(
Q

N
+

m

2N
) + n1v(2π(

Q

N
+

m

2N
)))δN(Q1 −Q2, n1) (17)

and so comparing with (16) gives

〈U−1
v TN(n)UvuQ1 , uQ2〉 − 〈OpN(en ◦Φv)uQ1 , uQ2〉 = O(

|n1|3

N2
δN(Q1 −Q2, n1))

Now take a general normalized wavefunction ψ ∈ L2(Z/NZ):

ψ =
∑
Q

c(Q)uQ, c(Q) = ψ(Q)/
√
N,

∑
Q mod N

|c(Q)|2 = 1

Then

〈(U−1
v TN(n)Uv−OpN(en◦Φv))ψ, ψ〉 �

∑
Q1,Q2 mod N

c(Q1)c(Q2)
|n1|3

N2
δN(Q1−Q2, n1)

=
|n1|3

N2

∑
Q2 mod N

c(Q2 + n1)c(Q2)
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and applying the Cauchy-Schwartz inequality, the sum is bounded by
∑

Q mod N |c(Q)|2 =
1. Thus we find that

〈(U−1
v TN(n)Uv −OpN(en ◦ Φ))ψ, ψ〉 � |n1|3

N2

Theorem 3.11. For every function f ∈ C∞(T2) we have

|〈
(
U−1

v OpN(f)Uv −OpN(f ◦ Φv)
)
ψ, ψ〉| � c(f)

N2
(18)

Proof. A general function f(p, q) =
∑

n∈Z2 f̂(n)en(p, q) and OpN(f) =
∑

n∈Z2 f̂(n)TN(n)
. Split the sum at R ∈ N and we have

|
∑
‖n‖6R

f̂(n)〈
(
U−1

v TN(n)Uv −OpN(en ◦ Φv)
)
ψ, ψ〉| �

∑
n∈Z |n1|3f̂(n)

N2

For the remainder
∑

‖n‖>R |f̂(n)〈(U−1
v TN(n)Uv −OpN(en ◦ Φv))ψ, ψ〉|we have

an upper bound of 1
R10

Now, since
∑

n∈Z2 f̂(n)(en ◦ Φv) = f ◦ Φv, we have

|〈
(
U−1

v OpN(f)Uv −OpN(f ◦ Φv)
)
ψ, ψ〉| � c(f)

N2
+R−10

and for R = N
1
2 concludes the proof.

3.5 QUE for perturbed Kronecker map

In this section we will study the asymptotic behaviour of the matrix elements
related to the perturbed Kronecker map. The main tool will be lemma 3.8
that connects the perturbed map to the unperturbed map.

Using the equality in Lemma (3.8) we can describe the quantization of
Φα

V = τα ◦ Φv as follows:

Theorem 3.12. Denote UN = Uh(N)−1Uτ (N)Uh(N) where Uτ (N) is the
quantization of τα, then we have

‖U−1
N OpN(f)UN −OpN(f ◦ ταΦv)‖ � N−1 (19)
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Proof. We already know that

‖U−1
h OpN(f)Uh −OpN(f ◦ Φh)‖ = O(N−2)

and that
‖Uτ (N)−1 OpN(f)Uτ −OpN(f ◦ τ)‖ = O(N−1)

and thus using the equality in Lemma (3.8) we conclude the proof

Remark 3.2. The set {ψj = Uh(N)−1ψτ
j } form a basis of eigenfunctions of

UN , where {ψτ
j } is a basis of eigenfunctions for Uτ .

With this representation of the eigenfunctions we can give an upper bound
for the asymptotic behavior of the matrix elements:

Theorem 3.13. For every f ∈ C∞(T2), α diophantine we have:

|〈OpN(f)ψj, ψj〉 −
∫
f | � N−2

Proof. Without loss of generality we will assume that
∫
f = 0. By definition

we have
〈OpN(f)ψj, ψj〉 = 〈OpN(f)U−1

h ψτ
j , U

−1
h ψτ

j 〉
and since Uh is unitary we have

〈OpN(f)ψj, ψj〉 = 〈Uh OpN(f)U−1
h ψτ

j , ψ
τ
j 〉

Now using Theorem 3.11 we get,

|〈Uh OpN(f)U−1
h ψτ

j , ψ
τ
j 〉 − 〈OpN(f ◦ Φh)ψ

τ
j , ψ

τ
j 〉| � N−2

since ψj is a normalized wavefunction , but using that f ◦Φh is still a C∞(T2)
we have that the second term is O(N−10) and therefore

〈OpN(f)ψj, ψj〉 � N−2

Remark 3.3. The upper bound found here is valid only for the quantization
of described here which includes an arbitrary choice of a sequence that con-
verges to α by rational numbers. since this quantization is not unique, and
since the operators ‖UN(a)−UN(a′)‖ ∼ 1

N
this upper bound only applies with

the specific eigenfunctions for a specific chosen convergent sequence for α.

22



4 Explicit eigenfunctions and eigenvalues

We now compute explicit eigenfunctions of UN and find its eigenvalues. An
eigenfunction of UN should satisfy the following condition:

eN(−a1a2

2
)eN(a1Q)ψ(Q− a2) = eN(φ)ψ(Q) (20)

Denote

D2 = gcd(a2, N) M2 =
N

D2

and for each 0 ≤ j ≤ N − 1 match a pair (η, l) such that j = η + lD2 η ∈
[1, D2], l ∈ [0,M2 − 1].

Lemma 4.1. The functions

ψ
(2)
η,l (Q) =

{√
D2eN(νlD2 + a1a2

2
ν(ν −M2)) P ≡ η − νa2(mod N)

0 P 6≡ η(mod D2)

are an orthonormal basis of eigenfunctions of UN with eigenvalues

φ
(2)
η,l = lD2 + a1η −

a1a2

2
M2

Proof. fix ψ
(2)
η,l (η) =

√
D2 according to (20)we can deduce that

ψ(Q− a2) = eN(
a1a2

2
)eN(−a1Q)eN(φ)ψ(Q)

and,

ψ(η − νa2) = eN(ν
a1a2

2
− a1

ν−1∑
m=0

(η −ma2) + νφ) (21)

for ν = M2 we get N |M2a2 and therefore ψ
(2)
η,l (η −M2a2) = ψ

(2)
η,l (η) or

eN(M2
a1a2

2
− a1

M2−1∑
m=0

(η −ma2) +M2φ
(2)
η,l ) = 1

for ψ
(2)
η,l consider

M2
a1a2

2
− a1

M2−1∑
m=0

(η −ma2) +M2φ
(2)
η,l = lN ⇔

φ
(2)
η,l = lD2 −

a1a2

2
+ ηa1 −

a1a2

2
(M2 − 1) = lD2 + ηa1 −

a1a2

2
M2

put φ
(2)
η,l in (21) and we get the required functions.
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Proposition 4.2. The multiplicity of an eigenphase φ is exactly D = (a1, a2, N).
The eigenphases are kD − a1a2

2
M2(mod N).

Proof. since −a1a2

2
M2 is a constant depending only on a1, a2, N it suffice to

show that the values achieved by lD2+a1η(mod N) l ∈ [0,M2−1], η ∈ [1, D2]
are

1. of multiplicity D

2. are all multiples of D.

2. is true since ∀ l, η D = (a1, D2)|lD2 + a1η. suppose that φ ≡ kD. there
exist η unique modulo D2

D
(and therefore there are exactly D as such) such

that a1η ≡ φ(mod D2). for such η there exists a unique l(mod M2) such that
lD2 + a1η ≡ φ and so we have shown that φ is an eigenvalue of multiplicity
D.

The multiplicity D of the eigenspaces may be to 1 if we choose a2 to
be coprime to N (and thus D = 1). This can be achieved with a rate of
convergence of ‖α − a

N
‖ � N1−ε which is the rate assumed for the rate of

convergence we achieved in section 3.2 (see section A.1 for a proof of this
rate). In this case we can write the eigenfunctions more explicitly:

Proposition 4.3. suppose that the vectors ~a
N

satisfy that (a2, N) = 1,define

ψ0(Q) = eN(
a1a−1

2 Q2

2
), (a−1

2 is the inverse of a2 modulo N). Then:

1. ψ0 is a well defined function of Z/NZ.

2. ψ0 is an eigenfunction of UN with eigenvalue 1.

Proof. 1. since (a2, N) = 1 then a−1
2 exists modulo N. For ψ0 to be well

defined it should give the same value for any residue class modulo
N.Checking ψ0(Q+N) we get

ψ0(Q+N) = eN(ba1a
−1
2 (Q+N)2) =

eN(
a1a

−1
2 Q2

2
)eN(

a1a
−1
2 (2N +N2)

2
) = eN(

a1a
−1
2 Q2

2
)e(

a1a
−1
2 (2 +N)

2
)

since a1 is even we get that e(
a1a−1

2 (2+N)

2
) = 1
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2. By definition we get that,

TN(ã)ψ0(Q) = e
−iπa1a2

N eN(a1Q)ψ0(Q− a2) (22)

Now ,

ψ0(Q− a2) = eN(ba1a
−1
2 (Q− a2)

2) = eN(ba1a
−1
2 (Q2 − 2a2 + a2

2))

which is

eN(
a1a

−1
2 Q2

2
)eN(−a1(a

−1
2 a2))eN(

a1a
−1
2 a2

2

2
)

by definition of a−1
2 we get that a−1

2 2a2 ≡ 1(mod N), a1a
−1
2 a2

2 ≡ a1a2(mod N)
and therefore,

TN(ã)ψ0(Q) = ψ0(Q)

Corollary 4.4. Define φc(Q) := eN(cQ), c ∈ Z/NZ the functions

ψj := ψ0(Q)φj(Q), j = 1 . . . n

is a basis of eigenfunctions of UN , with eigenvalues eN(−a2c),c = 1 . . . N .

Proof. All φc are eigenfunctions of the operator

[T ]φ(Q) = φ(Q− a2)

and therefore multiplying each one with ψ0 we get an eigenfunction of UN

with eigenvalue eN(−a2c)

5 Hecke operators

Another way of restricting the degeneracy of the eigenspaces is the Hecke op-
erators of UN . These are operators that commute with UN(A), and therefore
act on its eigenspace. In the following section, we find the Hecke opera-
tors of the Kronecker map the perturbed Kronecker map and irrational skew
translation.
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5.1 Hecke operators for Kronecker map

Here we find the Hecke operators of Uτ (N), (and therefore of Uv(N) be-
cause it is conjugate to Uτ (N)), and see that they act irreducibly on the the
eigenspaces of Uτ (N). Furthermore, we find that the group of Hecke opera-
tors , denoted by G is generated by 3 operators, and for each generator, we
find a unique basis of joint eigenfunctions of all operators in the commutative
subgroup of G containing Uτ (N) and the generator.

Definition 5.1. Operators contained in a commutative subgroup of all oper-
ators that commute with operator T are called Hecke operators of T .

Proposition 5.1. 1. The operators TN(b̃) = TN((−b2, b1)) such that

a1b2 − a2b1 ≡ 0(modN)

all commute with UN

2. The solution for this equation is:

(x, y) = (a2 +
k1a2

(a1, a2)
+

l1N

(a1, N)
,−a1 −

k1a1

(a1, a2)
+

l2N

(a2, N)
)

with k1, l1, l2 ∈ Z.

Proof. 1. recall (4) and consider the following:

TN(b̃)TN(ã) = eN(
ω(b̃, ã)

2
)TN(a+ b)

TN(ã)TN(b̃) = eN(
ω(ã, b̃)

2
)TN(b+ a)

and so in order for

TN(b̃)TN(ã) = TN(ã)TN(b̃) (23)

to occur we must have that ω(b̃, ã) ≡ ω(ã, b̃)( mod 2N) or

2ω(b̃, ã) = 0( mod 2N) ↔
ω(b̃, ã) = 0( mod N)

that is a1b2 − a2b1 ≡ 0( mod N)
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2. This equation is equivalent to the diophantine equation

a1x− a2y +Nz = 0

in order to solve this we will first solve for z = 0 and we get a 2 variables
linear equation which solution is (x, y) = (a2 + k1a2

(a1,a2)
, a1 + k1a1

(a1,a2)
).

Now the general solution will be adding freely multiples of N to each
variables i.e the solution is

(x, y) = (a2 +
k1a2

(a1, a2)
+

l1N

(a1, N)
,−a1 −

k1a1

(a1, a2)
+

l2N

(a2, N)
) =

(a2,−a1)(1 +
k

(a1, a2)
) +N(

l1
(a1, N)

,
l2

(a2, N)
)

with k1, l1, l2 ∈ Z.

Remark 5.1. Notice that all these operators can be described as the group
generated by TN( ã

(a1,a2)
), tM2

2 , tM1
1 that is

G =< TN(
ã

(a1, a2)
), t

N
(a2,N)

2 , t
N

(a1,N)

1 >

This group is commutative only if (a1, a2, N) = 1.

Although this group is not commutative, by choosing one of its genera-
tors described, we get a commutative subgroup of it, having unique Hecke
eigenfunction. This is described in the following.

Proposition 5.2. 1. The functions

ψ
(1)
η,l (P ) =

{√
D1eN(νlD1 + a1a2

2
ν(ν −M2)) P ≡ η − νa2(mod N)

0 P 6≡ η(mod D1)

are an orthonormal basis of eigenfunctions of UFN
N with eigenvalues

φ
(1)
η,l = lD1 + a2η +

a1a2

2
M1

2. Denote g = (a1, a2), D
′
2 = (a2

g
, N). The functions

ψ
(2)
η,l (Q) =

{√
D′

2eN(νlD′
2 + a1a2

2g2 ν(ν − N
D′

2
)) P ≡ η − ν a2

g
(mod N)

0 P 6≡ η(mod D′
2)
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The proof is the same as in (4.1) and the fact that

tFN
1 = t2 , tFN

2 = t−1
1

Remark 5.2. according to (4.2) we can deduce that TN( ã
(a1,a2)

) has a unique
basis of eigenfunctions since the multiplicity of all eigenvalues is 1.

Proposition 5.3. For the commutative subgroup of G,

G1 =< TN(ã), tM2
2 , t

N
(a1,a2,N)

1 >

the functions ψη,l form a unique Hecke eigenfunctions basis

Proof. We can describe ψη,l(Q) as

ψη,l(Q) =
∑

ν mod D

cj,νδη+νa(Q)

The functions δη+νa are eigenfunctions of tM2
2 with eigenvalues eN(Mη),

therefore ψη,l is an eigenvalue of tM2
2 with eigenvalue eN(Mη) Now suppose

ψη,l, ψη′,l′ have the same eigenvalue for all G1 then

Mη ≡Mη′( mod N)

and therefore η ≡ η′( mod D), and from the definition of the eigenvalues of
TN(ã) if η is fixed then l is determined modulo M and therefore ψη,l = ψη′,l′ .
since the joint multiplicity of all functions for all elements of G1 is 1 then this
is the unique basis of Hecke eigenfunctions.

For tM1
1 the proof is the same , and for TN( ã

(a1,a2)
) this follows from re-

mark 5.2. To understand that G is includes all Hecke operators up to linear
combinations of them we have the following theorem.

Theorem 5.4. The group G =< TN( ã
(a1,a2)

), t
N

(a2,N)

2 , t
N

(a1,N)

1 > acts irreducibly

over the eigenspaces of TN(ã).

In order to prove Theorem 5.4 we use the following two Lemmas.

Lemma 5.5. Following the notations so far, we have

1. DM2
a2

Da
≡ 0(mod N) DM1

a1

Da
≡ 0(mod N)
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2. TN( ã
Da

)tMi
i = eD(ki)t

Mi
i TN( ã

Da
) i = 1, 2 ki ∈ Z

3. (k1, k2, D) = 1

Proof. 1.

DM1
a2

Da

≡ 0(mod N) ⇔ DM1a2 ≡ 0(mod NDa) ⇔

DNa2 ≡ 0(mod NDaD2) ⇔ Da2 ≡ 0(mod DaD2) ⇔

a2 ≡ 0(mod
Da

D

D2

D
)

Since D = (Da, D2) we get (Da

D
, D2

D
) = 1 and so from CRT we get that

a2 ≡ 0(mod Da

D
D2

D
) ⇔ a2 ≡ 0(mod Da

D
∧ a2 ≡ 0(mod D2

D
which is true

and therefore we get that DM1
a2

Da
≡ 0(mod N). The same holds for

a1.

2. It is clear that due to (4) that TN( ã
Da

)tMi
i = eN(φ)tMi

i TN( ã
Da

). what is
need to be shown is that eN(Dφ) = 1 which is true due to part (1) of
the lemma.

3. Suppose N = pν , a1 = pα , a2 = pβ and therefore D = pmin(ν,α,β) , D1 =
pmin(α,ν) , D2 = pmin(β,ν) , Da = pmin(α,β) . Denote j1 = min(j|tjM1

1 TN( ã
Da

) =

TN( ã
Da

)tjM1

1 ) and get k1 = D
j1

, and so is k2 appropriately. it suffice to
show that

max
i=1,2

(min(j|tjMi

i TN(
ã

Da

) = TN(
ã

Da

)tjMi

i )) = D

under the assumption that all numbers are prime powers. M1
a1

Da
=

pν−min(ν,α)+α−min(α,β). If ν > α then in order to get jM1
a1

Da
≡ 0(mod N)

and therefore tjM1

1 TN( ã
Da

) = TN( ã
Da

)tjM1

1 ), we get j = pmin(α,β) =

pmin(α,β,ν) = D. If ν < α, β , β < α then for tM2
2 we get j = pmin(α,β,ν) =

D. All other options are the same.
Suppose now that N, a1, a2 are general, then as seen for prime powers,
if p|D for some prime either (k1, p) = 1 or (k2, p) = 1 and so we get
(k1, k2, D) = 1

Lemma 5.6. Suppose ψ(Q) is an eigenfunction of TN( ã
Da

) with eigenvalue c

then ∀ m,n tmM1
1 tnM2

2 ψ(Q) is also an eigenfunction of TN( ã
Da

) with eigenvalue
ceD(mk1 + nk2)
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Proof. Denote S = TN( ã
Da

), T1 = tM1
1 , T2 = tM2

2 . Due to (2) we can conclude
that

STm
1 T

n
2 = eD(mk1 + nk2)T

m
1 T

n
2 S

and therefore, if Sψ(Q) = cψ(Q) then STm
1 T

n
2 ψ(Q) = eD(mk1+nk2)T

m
1 T

n
2 Sψ(Q) =

ceD(mk1 + nk2)T
m
1 T

n
2 ψ(Q)

We can now conclude the proof of Theorem (5.4):

Proof. Denote H to be an eigenspace of UN . Suppose 0 6= V ⊂ H to be a
G-invariant subspace. as a G-invariant subspace V is an invariant subspace of
TN( ã

Da
) and therefore consists an eigenfunction of it denote this as ψ(Q) ∈ V .

Also due to G-invariant we can conclude that

∀ m,n Tm
1 T

n
2 ψ(Q) ∈ V

Now due to Lemma 5.6 Tm
1 T

n
2 ψ(Q) is an eigenfunction of TN( ã

Da
) with eigen-

value ceD(mk1 + nk2) where c is the eigenvalue of ψ(Q).Due to Lemma 3
(k1, k2, D) = 1 therefore #{eD(mk1 +nk2)|m,n ∈ Z} = D and so ceD(mk1 +
nk2) are D different numbers leading that V consists D linearly indepen-
dent eigenfunctions , and since H is of dimension D (see Lemma 4.2) we get
V = H

5.2 Hecke operators for Skew translation

In this section, we follow the procedure done by Marklof and Rudnick in [8].
There it was found that the rate of convergence of the expectation value of the
eigenstates is generically bounded by N−1/4+ε, and was constructed examples
where the rate is arbitrary slow. They also found explicit eigenfunction for
them the rate of convergence is always bounded by N−1/2. We find here the
Hecke operators for the skew translations, and find that the basis of explicit
eigenfunctions found in [8], are in fact the unique Hecke basis (basis of joint
eigenfunction).

Definition 5.2. Let α be real number. The following translation

Aα :

(
p
q

)
7→
(
p+ α
q + 2p

)
(24)

is called a skew translation.
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Remark 5.3. Notice that Aα can be described as x 7→ Ax + ~α where A =(
1 0
2 1

)
and ~α =

(
α
0

)
when α is irrational, the skew translation is uniquely ergodic (see proof in

[3]). in [8] there are proofs for a quantization of Aα ,its asymptotic behavior
and a basis of explicit eigenfunctions as follows:
Define Vα as [Vαψ](P ) = eN(−(P − a)2)ψ(P ) and FN be Fourier transform.
suppose a

N
→ α then

Theorem 5.7.
UN = FNVαF−1

N (25)

is a quantization of Aα.

Now Denote:

D = gcd(a,N) M =
N

D
Each 1 ≤ j ≤ N can be described uniquely by a pair (η, l) where

η ∈ [1, D] l ∈ [0,M − 1]

by j = η + lD.

Proposition 5.8. The functions :

ψ(η,l)(P ) =

{√
DeN(−ηaν2 − νlD + a2ν (M−1)(2M−1)−(ν−1)(2ν−1)

6
) ifP ≡ η + νa mod N

0 ifP 6≡ η modD

are an orthonormal basis of eigenfunctions of Vα with eigenvalues

φ(η,l) = lD − η2 + ηa− a2 (M − 1)(2M − 1)

6
= lD + ca,N(η)

Notice that ψ(η,l) can be written as ψ(η,l) =
∑

νmodD cj,νδη+νa where

δa(P ) =

{
1 P ≡ a mod N

0 P 6≡ a mod N

m(φ) is bounded by m(φ) � D
1
2
+ε. The rate of convergence of the ma-

trix elements 〈OpN(f)ψ, ψ〉 was found to be bounded by 1√
M

, for a general
eigenfunction, which can be arbitrary slow for certain α, and bounded by
N−1/4+ε, ∀ε > 0 for a generic α. For the eigenfunction in Theorem 5.7 the
rate of convergence is bounded by 1√

N
, ∀α. We see here that the eigenfunc-

tions described are the only Hecke basis of UN .
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Proposition 5.9. the unitary operator tM2 satisfy

tM2 Vα = Vαt
M
2

Proof. notice that Vα = t−a
1 V0. clearly V0 commute with t2 and all its powers

(since they are both multiplying different functions).since ta1t
b
2 = eN(ab)tb2t

a
1

we get that

ta1t
b
2 = tb2t

a
1 ⇔ ab ≡ 0( mod N) ⇔ b ≡ 0(modM)

Corollary 5.10. The group S =< tM2 ,Vα > are the Hecke operators of Vα

and therefore its Fourier conjugate SFN are the Hecke operators of UN .

Lemma 5.11. 1. The functions ψ(η,l) are eigenfunctions of tM2 and there-
fore are eigenfunctions of all S.

2. ψ(η,l) are the only basis of eigenfunctions of all S.

Proof. 1. as seen earlier ψ(η,l) can be described as

ψ(η,l) =
∑

νmodD

cj,νδη+νa

The functions δη+νa are eigenfunctions of tM2 with eigenvalues eN(Mη)
and therefore

tM2 (ψ(η,l)) = tM2 (
∑

νmodD

cj,νδη+νa) =∑
νmodD

cj,νt
M
2 (δη+νa) =

∑
νmodD

cj,νeN(Mη)δη+νa =

eN(Mη)
∑

νmodD

cj,νδη+νa = eN(Mη)ψ(η,l)

2. In order to show that this basis is the only basis it suffice to show
that there are no two functions with same eigenvalues for both tM2 and
Vα. given two eigenfunctions ψ(η,l), ψ(η′,l′) suppose they have the same
eigenvalues in both tM2 ,Vα. The eigenvalues of tM2 are eN(Mη) and so

Mη = Mη′(mod N) ⇔ η ≡ η′(modD)
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since η gets values only modulo D we get η = η′. Now the eigenvalues
of Vα are lD + ca,N(η) suppose

lD + ca,N(η) = l′D + ca,N(η′)(mod N)

as we saw η = η′ and therefore l ≡ l′(modM) and so l = l′ and
ψ(η,l) = ψ(η′,l′).

A Appendices

A.1 Co-prime approximation

Here we show that every ~α = (α1, α2) ∈ R2 can be approximated by (a1,a2)
N

such that a1 is even and (a2, N) = 1 for all N.

Lemma A.1. Every α ∈ R can be approximated by rational numbers a
N

such
that (a,N) = 1 for all N, and |α− a

N
| = O( 1

N1−ε )

Proof. It is known that it is possible to achieve an approximation by rational
numbers such that |α − a

N
| = O( 1

N
), and so all that is need to be shown is

that by inside the interval [a − c, a + c] where c=O(N ε) there exist b such
that (b,N) = 1. In other words we need to show that for every x there exists
y = O(N ε) such that in the interval (x, x + y] there is a which is invertible
modulo N.
Define ϕN(x, y) = #{x < m 6 x+ y|(m,N) = 1}.

ϕN(x, y) =
∑

x<m6x+y

∑
d|(m,N)

µ(d) =
∑
d|N

µ(d)
∑

x<m=kd6x+y

1 =

∑
d|N

µ(d)
∑

x
d
<k6 x+y

d

1 =
∑
d|N

µ(d)(by
d
c) = y

∑
d|N

µ(d)

d
+O(

∑
d|N

1)

Now O(
∑

d|N 1) = O(N ε)

Proposition A.2. ϕ(N)
N

� 1
log N
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Proof of proposition:
ϕ(N)

N
=
∏

p|N(1− 1
p
). Now remember that log(1 + x) = x+O(x2) and so

log
∏
p|N

(1− 1

p
) ≥ log

∏
p≤N

(1− 1

p
) =

∑
p≤N

log(1− 1

p
) =

∑
p≤N

{−1

p
+O(

1

p2
)} ∼ − log logN +O(1)

therefore
∏

p|N(1− 1
p
) & e− log log N+O(1) = C 1

log N

which concludes the proposition.
Therefore,

ϕN(x, y) = y
∑
d|N

µ(d)

d
+O(

∑
d|N

1) = y
ϕ(N)

N
+O(N ε) & y

1

logN
+O(N ε)

so we get that

#{0 < m|(m,N) = 1, x < m 6 x+ y} � y

logN
+O(N ε)

so by choosing y = N2ε it is guarantied that there is an invertible a modulo
N inside the interval (x, x+ y].

A.2 Diophantine approximation

Here we give a proof for Theorem 3.5, that states that when α = (α1, . . . , αl)
are all algebraic over Q then α is diophantine. We begin with a little less
general Theorem and deduce Theorem 3.5 from it.

Theorem A.3. Let ~α = (α1, . . . , αm) be a basis for a numbers field then for
every combination with integer coefficients the following inequality holds

|n1α1 + nmαm + k| � c(~α)

‖n‖m−1

Proof. Without loss of generality we can assume that α1, . . . , αm are algebraic
integers (since there exits a rational integer a such that aα1, . . . , aαm are
algebraic integers).Consider now the norm of n1α1 + · · · + nmαm + k. since
~α are integers we get that N (n1α1 + · · ·+ nm + αm + k) > 1 ,but

|N (n1α1+· · ·+nmαm+k)| = |n1α1+· · ·+nmαm+k||
∏
σ

(n1α1+· · ·+nmαm+k)σ|
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and so we get:

LHS ≤ |n1α1 + · · ·+ nmαm + k|c(~α)‖n‖m−1

and so since RHS > 1 we get

|n1α1 + nmαm + k| � c(~α)

‖n‖m−1

Using this Theorem we can prove Theorem 3.5.

A.2.1 Proof of Theorem 3.5

We assume that ~α = (α1, . . . , αm) are linearly independent over Q. ~α can
be extended into a basis over Q: α̃ = (α1, . . . , αm, . . . , αD) and so for all
n1, . . . , nm, k we have:

n1α1 + · · ·+ nmαm + k = n1α1 + · · ·+ nmαm + k + 0 · αm+1 + · · ·+ 0 · αD �
c(~α)

‖ñ‖D−1
� c(~α)

‖n‖D−1

and this concludes the proof.
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